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The Advanced Receiver (ARX II) currently being developed uses a Costas cross-

over loop to acquire and track the phase of an incoming quadrature phase-shift-

keyed (QPSK) signal. This article describes the performance of the QPSK lock
detector to be implemented, taking into account the phase jitter in the tracking

loop. Simulations are used to verify the results of the analysis.

I. Introduction

The Advanced Receiver II (ARX II) [1] is currently

being developed to demodulate signals from deep space
spacecraft. In addition to processing binary phase-shift-

keyed (BPSK) signals, the ARX II will acquire and track

quadrature phase-shift-keyed (QPSK) signals. The track-
ing as well as the acquisition performance of several QPSK

loops has been investigated [2], and it was determined that
the Costas cross-over loop offered a "good" compromise

between implementational complexity and relative perfor-
mance. The other two candidates were the maximum a

posteriori (MAP) estimation and the generalized Costas
loops. This article describes a lock detector for the QPSK

loops. The analysis is general in that it is applicable to

all three QPSK loops, and the results are validated by

computer simulations. The general QPSK carrier-tracking

loop structure and the lock detector are both shown in

Fig. 1. When this loop is implemented, an extra accu-

mulator is present in front of the loop filter to reduce

the loop update rate and improve the loop signal-to-noise

ratio (SNR). The lock detector structure can be gener-

alized to accommodate any multiple phase-shift-keying

(MPSK) signal as described in [3].

II. Lock Detection Analysis

The received QPSK signal can be modeled by

r(t) = V/'-_oa(t) sin(wot + O)

+ _ffi_ b(t) cos(_0t+ 0) + n(t)

where

and

a(t) = E akp(t - kTs)
k

b(t) = __, b_p(t - kTs)
k

(1)

are the independent in-phase and quadrature data streams

with ak and bk the binary 5=1 random data and p(t) the
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non-return-to-zero (NRZ), or Manchester, pulse of dura-
tion over Ts seconds. The data power is given by Po and

the incoming phase by 0. The signal is received in the
presence of noise that can be expressed as

n(t) = Vf2n¢(t) cos(w0t + 0) - V'_n,(t) sin(co0t + 0) (2)

where n¢(t) and n_(t) are random processes with a two-

sided noise spectral density of No�2. The input signal is

mixed with the reference signals

x_(t) - 2,/-_ cos(co0t+ b') (aa)
No

and

x,(t) - 2_/-P'D" sin(co0t + 0") (3b)
No

to produce, after integrating and dumping, the samples

(k+l)T.r,k = r,t,x,,t,(] ( _ dt
J kTo

Xl k X2k . )=R akcos¢--bksin¢ V/_cos¢ ¢sln

(k+l)T. dt
J kT,

=R(aksind+bkcos¢--- Xlk X2k )v/_ sin ¢ + _ cos ¢

(4)

where R _ _ is the symbol SNR, X'lk and x_k are
No

two zero-mean, independent white Gaussian random se-

quences with unity variance, and ¢ _ 0 - 0 is the phase

estimation error. The reference signals of Eq. (3a) and

Eq. (3b) need to be normalized by x/-_D/No for only the

MAP estimation loop, which contains the "hyperbolic tan-

gent" nonlinearity. For the other two loops, the amplitude
can be a constant independent of "¢/-_o/No. The tracking

performance of the three QPSK tracking loops has been

derived elsewhere [3], and the results are summarized in

Appendix A.

The lock detector algorithm used in the ARX II is sum-
marized in Appendix B for a general MPSK signal. In the

specific case of a QPSK signal, the algorithm reduces to

M

k=l

where z is the detector's signal obtained from samples Yk

A _ 2 2 2w : (,'h ,-,_) - (2,-_,-,_) (5b)

It is shown in Appendix C that the mean and the variance

of the detector signal z can be expressed as

Pz = -4MR47_os4¢ (6a)

and

[ ]a z =251 ms+19m44- 12m62

[ ,11+ 4M _ _ _d_ - M,,,_ - 9,,4 + 6,,,_,,,_
k=l

(6b)

where ¢ denotes the carrier phase error; mi = E{r_} =

E{r_} the ith moment; mij = E{rir!} the ijth cross-
moment; and ck, dk are constants defined in Appendix C.

(The overbar and E indicate expected values.) Note that
at high-loop SNR (i.e., when a¢ -+ 0), the mean and vari-
ance reduce to

Pz =--4-AI/_4 (7a)

and

°64MRS + _ + _ +O"z __--

from which the ideal detector's SNR can be derived. At

lower loop SNRs, the phase jitter might not be negligi-

ble and might result in a degraded detector SNR. All the

derivations have been summarized in Appendix C for ref-

erence.

III. Probability of Detection and of False
Indication

During carrier lock detection, each z sample is com-
pared with a predefined threshold r, and the lock detector

decides that the loop is in-lock when z exceeds r (i.e.,

z > r). It is possible that even when the loop is still not
locked or when no signal is present, z will occasionally be

larger than r. In this case, the lock detector will mistak-

enly declare an in-lock condition. The probability of this

event (probability of false indication) is
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oo exp(
(8)

where #z0 and 2a_0 are the mean and variance of the lock

detector signal in the out-of-lock state and erfc(z) is the

complementary error function (erfc(x) = 1-eft(x), where

erf(x) is the error function). Equation (8) assumes that z
is a Gaussian random variable since z is the sum of many

samples of equal variance. When the loop is not locked

on the signal, the input can be modeled as pure noise to

produce

_/z0 = 0

2
_r_o = 192MR 4

(9)

On the other [land, when the loop is locked on the signal,

the probability of detection is given by

Pd - _ exp _f_ j dz

(lO)

2where p_ and cr_ are given by Eq. (6). Alternatively, the
threshold can be eliminated from Eq. (10) and the proba-

bility of detection expressed as

Pd = _ erfc ) --
(11)

where SNR, = pz2/o'z_ denotes tile detector SNR. The

phase jitter in the tracking loop degrades tile detector's

SNR by a factor D,

D= SNR, (12)
SNRz ,ideal

where SNl_z,ideal is the detector SNR if an infinite-loop

SNR is assumed; i.e., there is no phase jitter (SNR, (ide,_O

is computed by using the high-SNR approximations for/_z

and az2 given by Eq. (7)). In Appendix A, it is shown that

at high-loop SNR the detector's SNR reduces to

MR
(13)

12 3sg/cz,idea_ = 4(2+ _+ _+ _)

For a given M, loop SNR, p, (p = lla_ where _ is given

by Eq. (A-13)), and PI, the detector's SNR, has to be
increased roughly by the factor 1/D in order to achieve

the desired probability of detection Pal.

Given Pd and P/, we can solve for the number of re-

quired detector samples M, namely,

hi = P7 _ryoerfc-l(2Pl) - cry erfc-l(2Pd)
(14)

The threshold r is obtained by solving Eq. (8) and setting

it equal to

r = 2_,oerfc-'(2Pl) (15)

where erfe-a(.) is the inverse complementary error func-
tion. When the loop is in lock, it can be argued via the

central-limit theorem that the random variable z is ap-

proximately Gaussian, with mean and variance as obtained
earlier.

IV. Discussion and Numerical Results

Computer simulations were used to validate the various

assumptions made in the analysis. Figure 2 depicts the

detection probability as a function of loop SNR when P! =
10 -4. It is clear that the detection probability degrades

significantly at low-loop SNR and the degradation itself is
a function of the desired detection probability P---_(which is

computed assuming zero phase jitter). The degradation is

better shown in Fig. 3, which depicts the loss in detector
SNR as a function of the loop SNR. At 20-dB loop SNR,

the degradation is about 1 dB, but it increases to 2.5 dB

as the loop SNR is reduced to 15 dB. In both figures, the
sinmlations and theory are in agreement for all three loops.

Note that the degradation in detector SNR for BPSK was

about 1 dB for 15-dB loop SNR [5].

When the detection probability was plotted as a func-

tion of symbol SNR, different performances for the various

loops were expected, as the loop SNRs are different when
both the data rate and the loop bandwidth are fixed. Fig-

ure 4 clearly depicts that effect, as the MAP estimation

loop attains a higher detection probability than the Costas

cross-over loop because of its higher loop SNR. Finally,

Fig. 5 shows both the nominal and the actual (16-dB loop

SNR) detection probabilities as a function of the number
of samples M and the corresponding threshold. This kind

of curve is very useful when one is designing the operating

parameters of the lock detector.
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Figure 6 depicts the probability of detection versus the
detector's SNR for several values of probability of false

lock. This figure is useful in determining the required de-
tector's SNR for a desired detector's performance. Finally,

Fig. 7 plots the detector's SNR versus E,/No for M = 300.
The detector's SNR for other values of M can be computed

from the following relation:

SNRz,M = SNRz,3oo + 10log10 _ dB (16)

As a design example, suppose that a QPSK detector

operates at P! = 10 -4 and Pd = 0.99, and that the signal
rate is 10,000 symbols per second with E_/No = 1.0 dB.

Using Fig. 6, it can be seen that the detector's SNR should
be about 12 dB. But, Fig. 7 states that at E,/No = 1 dB,

M = 300 and loop SNR = 16 dB (low-loop SNR case),

the detector's SNR will actually be about 5.0 dB. Equa-

tion (16) is used to compute the number of samples, M,
required to achieve 12 dB of the detector's SNR, which
results in M = 300 × 10(a_-5°)/1° = 1504 = 0.15 sec, and

Eq. (15) is used to compute tile threshold r needed for

PI = 10-4' Alternatively, Fig. (5) can be used to find the
required threshold value, which turns out to be 7" = 1300,

assuming that the output of the integrate-and-dump de-

vices is scaled by 1.O/(E,/Xo).

V. Conclusion

This article analyzed the lock detector performance for

the QPSK carrier-tracking loop in the ARX II. The analy-

sis is general and is applicable to other QPSK loops. Both

analysis and simulation were used to show that the effect

of phase jitter on the detector SNR can be significant (as

much as two decibels), especially at low-loop SNR.
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Fig. 1. Implementation of the QPSK loop with lock detector.
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Appendix A

Tracking Performance of Three QPSK Carrier Loops

Depending on the loop, the samples rc and r8 of Eq. (4) are processed to produce the error signal that forms the

input to the loop filter. In general, that error signal can be expressed as

_(¢) = ,'ckf("8_) - ,',kf("c_) (A-l)

where f(x) is some nonlinear odd function that defines the loop. Three possible functions will be considered:

sgn(x)
f(x) : x3

tanh(x)

(A-2)

In order to predict the performance of the loops, we need to compute the "squaring loss," SL, which is defined by

SL _ (E{d(0)})2 (A-3)
E{,2(0)}

where e(0) and e'(0) are the error signal and its slope, respectively, evaluated at ¢ = 0. Note that E{e2(0)} -- N 2 equals

the variance of the open-loop phase error process, a_. From this, one obtains the equivalent single-sided noise spectral

density, N_ , using the relation N_ = 2N"--YT_,where Ta is the symbol time. The loop responds to the mean of the error

signal, which is given by

E(¢) = E{R(ak sin ¢ + bk cos¢)f [R (ak cos¢-bksin¢ + (-xik cos<D-z_k sin ¢)/_)] }

-E(R(a, cos¢-btsin¢)f [R (a, sin¢+bkcos¢+(-xltsin¢+x21cos¢)l_)]}

(A-4)

where the expectation is taken first over the random data and then over the thermal noise. Using Eq. (A-4), the expected

value of the slope of the error signal can be expressed as

d(0)_ de(C)d¢ ¢=0 =RE{akf [R(ak-xlk/v/R)] +b_f[R(bk+x2_/v/R)]}

(A-5)

- R2E{a_f' [R(bk + x2k/v/R)] (ak-- Xlk/X/R)}

Averaging the above equation over the random data, one obtains

e'(O) = 2Rf[R - v_x] - 2R2f'[R - v_x] (A-6)
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where the overbar denotes expectation over the Gaussian random variable z with zero mean and unit variance. After

some algebra, we find the expected value of ¢2(0), namely,

E{e2(0)} = 2R [(R+ 1)E{f_[R - v_x]}- (E{xf[R- vfRx]} - v/RE{fIR - v/-Rx]}) _] (A-7)

In order to proceed further, the non-linearity f(x) needs to be specified. For example, f(x) = sgn(x) (if(x) = 25(x)) for

the Costas cross-over loop, in which case we obtain

E{sgn(R- v"Rx)} -- erf (v/-R-7 _) (A-Sa)

E{2(5(R - vf-Rx)} =,/-'2-'e -n/2 (A-8b)
V rrR

E{x sgn(n - V_x)} = - V/_Te -n/_ (A-8c)

E dn(R - : 1 (A-Sd)

which result in

[o"euz-
R + I - (v_erf x/-_ + _f_ge-R/2) 2

On the other hand, for the generalized Costas loop, f(x) = x 3 (if(x) = 3x 2) and we have

E{(R - V_x) 3} = R2(R + 3) (A-10a)

E{3(R- v_x) 2 } = 3R(R + 1) (A-10b)

E{x(R - V_x) a} = -Ra/2(R + 1) (A-10c)

E{f2(x)} = Ra(R 3 + 15R 2 + 45R+ 15) (A-10d)

1
6 a (A-11)

SL = 1+ 2--_+_-+2-W,

In the MAP estimation loop, the nonlinearity is given by f(x) = tanh(x) (if(x) = sech2(x)), which prevents a closed-form

expression, i.e.,

[tanh(R - v/-Rx) - Rsech2(R- V_x)] 2
EL = (A-12)

(R + 1)tanh2(R - v/-Rx)- ix tanh(R - v/'Rx)- v/'Rtanh(R - v/'Rx)] 2
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The variance of the phase error process in all three loops can be expressed as

cr_- NgBL _ 1 BL (A-13)
[e(o)] 2 p_SL r,yt_sL

where Pc A P__e_m_BL is the loop bandwidth, r,y is the symbol rate, and R = E,/No is the symbol SNR. Note that= NoBL '

for R _ 1 dB, SL << 1. We should comment that the above variance a_ is the variance relative to w0, which is used to

compute the telemetry performance. The variance that determines acquisition and the cycle slip process is relative to

4_0, and hence will be 16 times larger.
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Appendix B

Error and Detector Signals for MPSK

Let rc be the "in-phase" and r, the "quadrature" outputs of the integrate-and-dump devices of a MPSK loop: Ref. [4]

proposes the following algorithms for deriving the error signal and the detector's signals for the various MPSK tracking

loops.

Derivation algorithms

M Error signal Detector signal

2 2
2 _2 = rc x ra d2 = r c -r s

4 ¢4=d2 x e2 d4=d_-*_

8 ca=d4 x _4 ds=d_-e_

N fN = d_ × e_ dN = dN -- e2N
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where

Appendix C

QPSK Lock-Detector Statistics

The signal for the lock detector is derived using the following algorithm

M

z=EY_Xr

k

A 2 2 2 (C-l)

In order to compute tile mean and the variance of z, we need the second through tile eighth moments of r& and rsk.

The odd moments are all zero (since the noise is Gaussian), and hence only the even moments need to be computed.

To simplify the notation, the subscript k will be dropped from the next several equations. Taking tile expected value of

Eq. (4), the even moments are given by

m2 = ,¢ = r2 = 1+ (c-2)

(/x R 4 cos 4¢
,n4 = r4 = r 4 = r- (c-3)

A R6(_ 15 cos4¢)+ 15 ( 1))m6 = r_ = ,',6= (5- 3cos4¢) + _(3- _ 3+ (C-4)

ms = ,'_ = r,_ 105 - 5cos4¢ - 8'lcos 4¢'

+ (2--_(5 + 3cos4') + 15(1-cos4¢))_(/105 3 +--

where

r=3

At high-loop SNR, ¢ --+ 0 and m4, rn6, ms reduce to

R 4 (1

cos 4¢) + 3(1 - cos 4¢))
420 105] (c-5)

1 2 1 ) (C-6)_+_+_

6 3 ) (C-7)+_+_

(154515) (C-8)_ l+-ff+_+_

28 210 420 105_ (C-9)
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respectively. Cross-moments for i = j are also needed and are given by

o  4(1(m22 = E{rcr,} = 1 + cos 4¢) + _ + (C-10a)

/' 4 4 =R8( +8(l+cos _ 40_ ___82(1 )rn44 = E{rer,} r 2 8¢) rcos - cos4g) (C-10b)

A 6 2 6 2 Rs( 1 15 "9 60 15"]rn62 E{r,r_} = } -5 6cos4¢ (25- 9cos4¢) + cos4¢) + + (C-10c)= E(r_, = + +_ _-_( - _ n_)

Note that as c% --_ 0, m2= _ rn_, 77244 --+ m 2, and m62 ---+rn6m=. Now, the mean value and the variance of the detector's

signal can be computed. The mean is given by

M

k=l

where

6r e r s (C-12)

Using the moments just obtained gives

pu = -4R4c---_-4-s4¢ (C-13)

The next step is to find the moment of z 2. Equation (C-1) gives

M M M 2 M M M ._1

z zz ,z 2 4 r 4 6 reirsi: rci Jr ni _- "J--- rci rcj rsi rsj

-- i=1 i=1 i=1 j=l i=1 j=l

M k,l M M M M M M

+ 36_--_ 2 2 2 2 2Z 4 4 4 2 2 4 2 2rcirejrsirsJ -_- Z re/rsj -- 12 _ _ rcircjrsj -- 12 Z _-_rsirejr_j

i=1 j=l i=1 j=l i=1 j=l i=1 j=l

(C-14)

Let z 2 = Sa +$2, where Sx is the sum of all the terms when i = j and $2 is the sum of all the terms for i ¢ j. Then for

i=j

4 4 4 4
rsi rsjrcircj : -_ m8 (C-15a)

4 4 (C-15b)
reirsj ----m44

and

6 2 6 2

reirsj = r3irej : ?1162

$1 = 2M(ms + 19m44 -- 12m62)

(C-15c)

(C-16)
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2 2
For i ¢ j, let k _=li-j ]. Note that r_irej = m_ because the random data make the second moments of rcZiindependent

of r_2. The double sums can be converted into single sums as follows:

M-1 M-1 M-I M-1

2 _--",....,ckr_i%j4 4 +- ckr¢Fcjr, ir, j + 24 _--'_ 4 2 236 _ 2 2 2 2 2 E 4 4$2 -- Ck rci rcj r_jck rci rsj

k----I k=l k=l k=l

M-1

= 4 E ckdk + 36(M - 1)Mm 4 - 24(M - 1)Mm4m_
k=l

(c-17)

where ck = 2(M- k) for k = 1,2,... M- 1. Note that

found from the relation

M-1

ck = M 2 - M (and co = M). The variance of z can now be
k=l

2 _-_ (_)2 S1 + $2 p_ (C-18)O"z _ -- _ --

Using the previous equations, it can be shown that

_z =2M rns+19m44- 12m62

where

such that

dk _ 4 4
xcizcj

and

[____ .%/-1 ]
+ 4M E ckdk - Mm 2 - 9m 4 + 6m4 m2 (C-19)

k=l

k=li-j I

= (r - _l cos 4¢,) (r - _l cos 4¢/ )

= (r 2 - re -Sa_ + fk/4)

fk A cos4¢i cos 4¢j

(o2o)

(C-21)

At high-loop SNR, the mean and variance become

_tz,idea I _- -4MR 4 (C-22a)

and

/ \

2 = 64MR s ( 2 9 12 3
+ + + 2-4-,/

(C-22b)

which result in
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MR (C-23)
SN Rz,ideal :" 4(2 + _ + _ + _s)

So far, no assumption has been made regarding the statistics of the phase error process. Assuming that the phase error

is indeed Gaussian with second-order density,

1 ( R(O)¢_-2R(r)¢iCj q-R(0)¢])P(¢i, Cj, 7") _ 2Try/R2(0) _ R_(r) exp - _-(-n_-__-_ _

1 ( (c-24)= 27r_/1-C2(r) exp 2-a_-(r---C'_--(r_

where R(r) is the correlation function and can be expressed in terms of the normalized correlation function C(r) as

R(r) = a2cC(v) where

C(rk) = (1 I BLT_0.91l)exp(--1.25BLTk) (C-25)

BL is the one-sided loop bandwidth and a_ the closed-loop error variance.

A
rk = ro = T, l i-j I=1 t,-q I (c-26)

With this Gaussian assumption, the expected value of cosb¢ will be e S-_" Hence, we can substitute in all the above

equations cos 4¢ with e-S°_ and cos 8¢ with e-a_a_. Moreover,

cos4¢i cos4¢j = e -16°_ cosh(16_r_C(rk)), i ¢ j (c-27)
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